International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012
ISSN 2229-5518

Development and Analysis of RE Tool for
Recovering Design Artifacts during Software
Reverse Engineering

Parul Dongre, Arvind Upadhyay

Abstract—Reverse engineering provides a direct attack to solve comprehension problem of large software system. This research paper elaborates
development of tool for reverse engineering of java code & recovering the concept to discovering the design artifacts of a software system from its
source code and related documentation. Here we used REAM (reverse engineering abstraction methodology) for tool development and evolve algorithm
which reverse engineer the java code to generate class diagram, use case diagram, activity diagram. There are already some tools available in market,
but tools are having very limited reverse engineering capabilities. Like, they do not clearly specify relationship between classes, because all the relation-
ships are not properly extracted. Here we have developed a tool named ‘RE Tool’ which tends to provides all reverse engineering capabilities. As well as
after development, analysis is done by analysing two different commercial tools ArgoUML and Altova Umodel@2012 with RE Tool considering case stu-

dies.

Index Terms— Reverse engineering; level of abstraction; legacy application; REAM; Class diagram ; ArgoUML ;Altova Umodel@2012.

1 INTRODUCTION

I he term reverse engineering as applied to software

means different things to different people, prompting
Chikofsky and Cross to write a paper researching the various
uses and defining taxonomy. From their paper, they state,
"Reverse engineering is the process of analyzing a subject
system to create representations of the system at a higher level
of abstraction."[1].

A common problem experienced by the software
engineering community traditionally has been that of
understanding legacy code. Reverse Engineering is a
methodology that greatly reduces the time, effort and
complexity involved in solving the program comprehension
problem. Reverse Engineering is best defined by Chikofsky
and Cross as “the process of analyzing a subject system [1]-

- To identify the system’s components and their inter-

relationships and

- To create representations of the system in another form or

at a higher level of abstraction.

During the reverse engineering process, the source code is
not altered, although additional information about it is
generated.

Ms.Parul Dongre is currently pursuing masters degree program in com-
puter science & engineering in IES, IPS academy, Indore, India.

E-mail: parul.dongre@gmail.com

MR.Arvind Upadhyay is Assistant professor in department of computer
science & engineering in IES, IPS academy, Indore, India.

E-mail: upadhyayarvind10@g¢mail.com

2 METHODOLOGY

A key success to reverse engineer the code and find design
artifacts is well defined and precise methodology. Here we are
using reverse engineering abstraction methodology
(REAM),[9] it comprises five models which are high level
model, functional model, architectural model, source code
model and mapping model. High level gives an abstract
understanding of the system at a higher level to recover the
artifacts. Functional model represents the functional elements
and relationships among the system artifacts. Source code
model is extracted from the source code using the high-level
model (and functional model) to develop an understanding
and model it at an abstract level. The architecture model is
developed with the understanding gained out of developing
the high level, functional and source code models and by
understanding the dependencies between the various artifacts.

As figure no. 1 describes the five models used in REAM
methodology [9]. The reverse engineering tool communicates
with all these five models to generate design artifacts. Which
facilitate further user to understand legacy codes, which are
having great complexity.

The user defines a mapping model between the entities in
the source code model (i.e., functions, classes) and the entities
in the high-level (i.e., concepts), functional (i.e., relation and
logic among programs or concepts) and architectural (i.e.,
modules or components) models.

IJSER © 2012
http://www.ijser.org

http://www.ijser.org
mailto:Umodel@2012
mailto:Umodel@2012
mailto:dongre@gmail.com
mailto:upadhyayarvind10@gmail.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012

ISSN 2229-5518

;
s /

HIGH LEVEL MODEL N

A

FUNCTIONAL NODEL

y oy

ARCHITECTWRAL MODEL

| W/

SOURCE CODE MDDEL

l < ’ ."/

i

JAPEING
=
AHLEACLS

\\J

Fig. 1. REAM Model

3 PROPOSED SOLUTION

Reverse engineering is the process of analyzing a subject system
to create representations of the system at a higher level of
abstraction [1]. It can also be seen as going backwards through
the development cycle.

Reverse engineering can be viewed as the process of
analyzing a system to identify the system's components and their
interrelationships and to create the representations of the system
in another form or a higher level of abstraction and to create the
physical representation of that system [1].

Many research groups have focused their efforts on the
development of tools and techniques for program understanding.
Software reverse engineering, or program comprehension, is the
difficult task of recovering design and other information from a
software system. It is difficult to perform because there are
intrinsic difficulties in performing the mapping between the
language of high level design requirements and the details of low
level implementation [10]. The major research issues involve the
need for formalisms to represent program behaviour and
visualize program execution. Reverse engineering has many
supporting aspects [2]. It may focus on features such as control
flows, global variables, data structures, and resource exchanges.
At a higher semantic level, it may focus on behavioural features
such as memory usage, uninitialized variables, value ranges, and
algorithmic plans. At an even higher level of abstraction, it may
focus on business rules, policies, and responsibilities. Each of
these points of investigation must be addressed differently.

4 DEVELOPMENT METHODS

We will actually design a parser that will implement the con-
cept of reverse engineering and accordingly reversely engineer
the input java code & generate the respective design artifacts
like class, sequence, activity and use case diagram. In order to
implement the concept of reverse engineering we firstly allow
the user to import the desired input java code into the inter-
face (Input Screen where he can import the java code from the

stored path) and then step by step generate the class diagram
first after that we proceed towards the sequence, activity and
use case diagram.

It is clear from the System Interfaces point that we are

allowing the user an interface from which he can able to
generate the required design artifacts after reverse engineering
the java code. At first user will interact with a screen. Here he
defines the source path of the input java code file. After
defining the source path of the java code and importing it the
actual process starts.
The base guideline for the research is Reverse Engineering
concept. The entire algorithm in most general form of under-
standing is defined in this point. It will actually describe that
how the input java file isprocessed

Class Diagram Generator: The first solution came in the form
of “Class Diagram”. Here there is another interface by which the
user can define the settings.

parameters of the class diagram like in terms of hierarchical
degree of separation, in terms of functions and attributes of each
sub classes (child classes) also the root (parent class) etc. There
are some more properties are there which the user can set
according to his need.

Sequence Diagram Generator: After successfully generating
the class diagram the next will be to generate the desired
sequence diagram. Here we used parsing technique to generate
the sequence diagram.

Activity Diagram Generator: The next step is for the
generation of activity diagram. For this we need to extract the
loops and operators used in various functions of the classes. Then
we can find the various activities.

Use Case Diagram Generator: After activity diagram, the
next step is to generate the use case diagram of the java code. This
is a very crucial step. Use Case diagram successfully depicts all
the functionalities as well as the interaction between various
actors.

5 ALGORITHAMS TO GENERATE CLASS
DIAGRAMS, USE CASE AND SEQUENCE
DIAGRMAS

5.1 To generate UML design artifact: Class Diagram

Input: Java Source Files
Output: Class Diagram

1. Repeat while all files are analyze
2. javaClass < class files related to input so //list all class files
in the input code
3. relation < temporary saves the relationship of class
// get the class type (like extended...) map the relation
4. nameFunction < get names of functions in classes
/ / retrieve member function in class map the function
5. nameVar € get variables used in function
// get the members
6. return type < get return type of variable
// get the return type of function map the type and variables
7. Call Draw Variable ()
// graphics function to draw the image

IJSER © 2012
http://www.ijser.org

http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012

ISSN 2229-5518

5.2 To generate UML design artifact: Activity
Diagram

Input: Java Source Files
Output: Activity Diagram

1. Parsejava file

// add match function to parse file
2. Find Loops

// find all for, while, do...while structure
3. Find Decision Operators

// find all if, Else, switch and case statements
4. Find Loop Contents

// find code block
5. Find Decisional Contents

// find code block
6. Call Draw Function

// to draw java files.

5.3 To generate UML design artifact: Use Case
Diagram

Input: Java Source Files, No. of Actors, Actors relation (Choos-
es by user itself)
Output: Use Case Diagram

1.JavaClass € class files related to input source
/ /list all class files in the input code
2. Relation € temp save relationship of class
// get the class type (like extended...)
map the relation
3. Call draw function
/ /draw a basic diagram
4. Add actors
// user defined actors
5. Call draw function
// call draw function to add actors
6. Add relationship
// user prepare a relation between user and classes
7. Call draw function
// draw the relations

6 RESULT FROM THE TOOL

Above is a description of how the system will interact with its
users. It actually defines how the user will interact with the
application which uses the concept of reverse engineering and
extract the design artifacts from the input java code & helps us
to understand the working the functionalities of the code in a
more easy and understandable manner.

After development of tool (RE Tool) we are analyzing our
tool with Altova Umodel@2012[4, 5] and ArgoUML [6, 7].
Here for this we consider two different java codes which are
airthmatic24 game [3] and college database application. Air-
thmatic24 game is developed in Java by Huahai Yang. It is a
simulation of popular traditional card game. The second code

which is under consideration is small college database applica-
tion. There are also some research have been done on two
most successful industrial-strength CASE-tools (Together and
Rose) in reverse engineering the static structure of software
systems and comparison done between them. To estimate the
quality of the diagrams more objectively, they also compared
with a “correct class diagram”, which could be a design model
or a model manually constructed by the experts of the subject
system [11]. Same approach is followed here during this re-
search work.

Below there are snapshots by considering two java pro-
grammes run on respectively ArgoUML and Altova Umo-
del@2012and RE Tool (which is developed during this re-
search work).

A. ArgoUML

! =}
Fle Edt Wew Credte Buange Gessiaon Coie Lods iy

HLELED e a5 EEEDBRE
¥ oo cet o[n]4] (B = oo]so]=[4] B[] 4+ ® [+ B]|O"
Cder By Ty, Name
B bamétatehangsg %
et e
B stateadngients
=]

Drgnai

v 2w | 4Tololem | aProgetes | Jocuni el | Sawce | Coneiaits | Swostpe | Tagged Vaues | Check
» No Tod i
Moot

43 ugd 50BN 1

W iniled - il dProfile colegl_classes - krgoliL *
Ble [Vew Create Jronge Geosraun Cotige Lods [l
G|Rje B BB LILSEL IR

¥ pkagecentrc

EEBDBEE

r{x]4|[mg] [=[sx]e- 1] B[t [+~

o
]
o

(Ondes By Type e

& b
8 e

R IREC IR REED lL,nga [0
owe | Wi WOFrrpd Tiw

 EInOIUnINooo

mdm

= 0 mEmm

i

oy Py * Sness | ATolu hem | a roparties | Docuneli T RET s | Serestype | Togued Vaues | Cich
=[] [y [l Tutem seeced

Fig 3. College DB application by ArgoUML

IUSER © 2012
http://www.ijser.org

http://www.ijser.org
mailto:Umodel@2012
mailto:del@2012and

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012
ISSN 2229-5518

B. Altova Umodel@2012

QRIS

e prectinEicsin

Fig 5.

www .altova.com
College DB application by Altova Umodel@2012

Gensrated by UNodel Winw.altova.com
Fig 4. Arithmetic 24 game by Altova Umodel@2012
pka coleuio)
Alumno Boletines sannotationss
(fram colegio) | | (from colegio) Calificaciones
(from colegio)
~ConGImire
Conexion
(from colecio) _‘
) \stuu BrEbdanr
Nﬁ\ IAMESHRCE:
colegio
Grupe Loguin Profesor
(trom colegio) (from colecio) (from colegio)
Especialista Grado Jornada Materia
(from colegio) (from calegio) (from colegia) (from calegio)
MDIPricinpal Hotas
(from colegio) (from colegio)
Generated by UModel

http://www.ijser.org

IJSER © 2012

C. RE tool
T dehes gl =i

21 E‘ N.NN'UFL‘DE

‘ammmm

Juier)

(i
| Ek"

() Do e
T /|
\

I iarill

Fig 6. Arithmetic 24 game by RE Tool

. e ——
e Twches gl =
TR u,.w.wwug

Billlegilo)

Fig7. College DB application by RE Tool

http://www.ijser.org
mailto:Umodel@2012
mailto:Umodel@2012
mailto:Umodel@2012

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012

ISSN 2229-5518

For ArgoUML by importing java code of airthmatic24 game
and selecting the ‘class diagram generation’ option screen (Fig .2)
is generated. It generates total 19 classes from java code and zero
number of associations because it not recognizes association in
code. By importing java code of college database application and
selecting the ‘class diagram generation” option screen (Fig. 3) is
generated. It generates total 14 classes from java code and zero
number of associations.

For Altova Umodel@2012 after importing java code for air-
thmatic24 game by clicking tree tab. And after Expanding the
Class Diagrams package, all class diagram contained in the
project are displayed (Fig. 4). By double click the main diagram
icon the Class diagram appears as a tab in the working area. After
class diagram generation diagram, it identifies that it recover total 1]
19 classes and 11 associations. By selecting java code of college
database application, it generates total 13 classes from java code [
(Fig. 5) and 5 associations.

For airthmatic24 game RE Tool (Fig. 6) recovers total 19
classes and 22 associations. For college database application this
tool recovers 14 classes and 21 associations (Fig. 7). B3]

For analysis here we consider two parameter which are
number of classes and number of association. Numbers of classes
(NOC) are the general measure for the overall size of a software 4]
module. Therefore, high NOC values may indicate a more 5]
detailed representation [8]. Second parameter is number of
association (NOA) which is a metric measure of
interconnectedness in a module [8]. In reverse engineering it is

important to understand how classes are connected. g
7]
TABLE 1
PARAMETERS FOUND BY VARIOUS TOOLS 8]
]
Argo UML
RE Tool 19 22 [10]
Altova 19 11
Umodel [11]
Argo UML 14 0
RE Tool 14 21
Altova 13 5
Umodel
7 CONCLUSION
Understanding object-oriented programming can be a
difficult task no matter what language are used. For Program
understanding we can use various kinds of tools which
IJSER ©2012

support reverse engineering to recover lost information, for
improper documentation, to provide alternate view, to
extract reusable components and to detect side effects. The
purpose of this research paper is to develop a tool which
gives a facility to recover design artifacts from java source
code. Which is helpful when there is general lack of
understanding of system exist, if document is unavailable, if
staff member left the job or any new people in the staff. This
research paper elaborate development of reverse engineering
tool which we gave name ‘RE tool” for java code which
further recover the design artifacts of a software system from
its source code and related documentation. Here we also
analyzed this tool with two commercial used software tools
like ArgoUML and Altova Umodel@2012 by considering
three different case studies.

REFERENCES

Chikosfy Ej. & cross].H., “Reverse engineering and design recovery: A tax-
onomy” IEEE Software, january 1990 ,7(1):13-17

Hausi Muller, Kenny Wong, Scott Tilley, “Understanding Software Systems
Using Reverse Engineering Technology, Colloquium on Object Orientation in
Databases and Reverse Engineering” The 62nd Congress of “L’ Association
Canadiene Francaise pour 1’ Avancement des Sciences (AFCAS)” May 16-17
http:/ /javaboutique.internet.com/arith24/ :- , Arithmetic 24 Game ', which
is developed in Java by Huahai Yang. It is a simulation of popular traditional
card game.

Altova Umodel information from http:/ /v2006.sw.altova.com/UModel.pdf
Altova Umodel tutorial from

http:/ /manual.altova.com/umodel/umodelbasic/index. html?umtutorial ht
m

Argo UML manual from

http:/ /argouml.tigris.org/ files/ documents/4/8727 / argomanual. pdf
ArgoUML tutorial from

http:/ /staff.ustc.edu.cn/~zhuang/ cpp/ tools/ ArgoUML%20Tutorial. pdf
Shivani Budhkar, Dr. Arpita Gopal “Reverse Engineering Java Code to Class
Diagram: An Experience Report” International Journal of Computer Applica-
tions 29(6):3643, September 2011. Published by Foundation of Computer
Science, New York, USA.

Nadim Asif “Reverse Engineering Methodology to Recover the Design Arti-
facts: A Case Study”,In Software Engineering Research and Practice 2003 pg
n0.932-938

Michael L. Nelson “A Survey of Reverse Engineering and Program Compre-
hension” ODU CS 551 - Software Engineering Survey, April 19, 199

Ralf Kollmann, Petri Selonen, Eleni Stroulia, Tarja Syst and Albert Zundorf
A Study on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering”, Proceedings of the Ninth Working Conference on Re-
verse Engineering (WCRE.02) 2002 IEEE.

http://www.ijser.org

http://www.ijser.org
mailto:Umodel@2012
mailto:Umodel@2012
http://javaboutique.internet.com/arith24/
http://v2006.sw.altova.com/UModel.pdf
http://manual.altova.com/umodel/umodelbasic/index.html
http://argouml.tigris.org/files/documents/4/8727/argomanual.pdf
http://staff.ustc.edu.cn/~zhuang/cpp/tools/ArgoUML%20Tutorial.pdf

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012
ISSN 2229-5518

IUSER © 2012
http://www.ijser.org

http://www.ijser.org

